Technical Report ITL-97-2

m Supersedes Technical Report ITL-96-4
February 1997

US Army Corps

of Engineers
Waterways Experiment
Station

A Brief Study of Rational Apex

by Clyde Christopher

Approved For Public Release; Distribution Is Unlimited

19970414 090

(B0 QUATITY TR &

Prepared for Headquarters, U.S. Army Corps of Engineers

The contents of this report are not to be used for advertising,
publication, or promotional purposes. Citation of trade names
does not constitute an official endorsement or approval of the use
of such commercial products.

@PRINTED ON RECYCLED PAPER

Technical Report ITL-97-2
Supersedes Technical Report ITL-96-4
February 1997

A Brief Study of Rational Apex

by Clyde Christopher

U.S. Army Corps of Engineers
Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Final report
Approved for public release; distribution is unlimited

|DTIC QUALITY TNSPRCTRD &

Prepared for U.S. Army Corps of Engineers
Washington, DC 20314-1000

US Army Corps - B oo
of Engineers VAN S 4
Waterways Experiment / I | ooy {
Station 7 . e -#g
’r,’ 7 : . P, e E]

l & Ilt//

< SL}I\‘} v e FOR INFORMATION CONTACT:
et otV RN PUBLIC AFFAIRS OFFICE
3 ey . U.S. ARMY ENGINEER
ENVIRONMENTAL § . ; RN ?t:;/ WATERWAYS EXPERIMENT STATION
LABORATORY Ao P 3909 HALLS FERRY ROAD

VICKSBURG, MISSISSIPPI 38180-6199
S PHONE: (601} 634-2502

\

1
:
3

ane - e

AREAOF RESERVATION « 2.7 sqion

Waterways Experiment Station Cataloging-in-Publication Data
Christopher, Clyde. ‘

A brief study of rational apex / by Clyde Christopher ; prepared for U.S. Army Corps of
Engineers.

36 p. :ill. ; 28 cm. — (Technical report ; ITL-97-2)

Includes bibliographic references.

Supersedes: Technical report ITL-96-4

1. Apex (Computer program)2. Ada (Computer program language) 3. Software configuration
management. 4. Software engineering — Management. |. United States. Army. Corps of
Engineers. Il. U.S. Army Engineer Waterways Experiment Station. Hi. Information Technology
Laboratory (U.S. Army Engineer Waterways Experiment Station) V. Title. V. Series: Technical
report (U.S. Army Engineer Waterways Experiment Station) ; ITL-97-2.
TA7 W34 no.ITL-97-2

Contents

iv
I—Introductionc.. it i it i et 1
Getting Started it i i e et 2
Creating Objectsottt ittt ianeeeanannn. 2
2—Text Editorsc.oouniiuiiii ittt e ieeeeenenaanannnnns 4
The Apex TextEditor ittt .4
The AdaEditor i ittt iiiiiaannnn. 4
3—Writing Programs in Adaciiiitiiiiii it ieaa., 7
Creating a Subsystemc.c.ceitiiueennenneennennnnnnannn 7
CompilingaProgramoiun ittt et i 9
LinkingaProgramoiiiiiiriiinineiinennnnnnnnnnn 10
ExecutingaProgram ittt 10
4—DEbugging ...ttt 11
Starting the Debuggerc.iiiiiiiiiiiiiiii ittt 11
Setting Debugger Optionsueieeiriieeinennnnneennn. 13
Using Breakpointscoitiiinneniiineinninnannnannnn. 14
Displaying Values of Objects ettt 16
Machine Level Debugging i 16
Debugger Windowsttt it 17
5—Managing Large Projectsiiitiiiriennnennnnnn. 20
Decompositionof the System 20
Subsystemsand Viewsoiiiiiiiiniiii it 21
Creating Subsystems, Views, and Towerscccevuenn.n.. 22
ImMpOrts ... e e 23
WorkinginaTower.........ooiiuiiiiiiiiiiiieiiieiinnaannn. 25
6—Conclusionsccciiiiiiii i i it 28
References ettt e e it 29
SF 298

Preface

This report was written by Mr. Clyde Christopher, Professor of Computer
Science, Jackson State University, Jackson, MS, under an Inter-Governmental
Personnel Agreement. It was originally published as Technical Report ITL-96-4.

The author expresses sincere appreciation to Dr. N. Radhakrishnan, Director

of the Information Technology Laboratory (ITL), U.S. Army Engineer

- Waterways Experiment Station (WES); Dr. Windell F. Ingram, Chief, Computer
Science Division, ITL; Mrs. Deborah Dent, Group Leader, Research Group,
Computer Science Division; and Mr. Alan Lee, DynTel Corporation, for the
opportunity to engage in this research project. The continuous development and
use of advanced processes at ITL are the result of their insight and their quest for
excellence in the field.

A hearty thanks is extended to Mr. Richard Carpenter, Contractor, DynTel
Corporation, for equipment and systems technical support throughout this short
period. Without his assistance nothing could have been accomplished.

During the publication of this report, Director of WES was Dr. Robert W.
Whalin. Commander was COL Bruce K. Howard, EN.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.

1 Introduction

Two important features of Apex are subsystems and views. A subsystem is a
section of a larger system. A rational subsystem is a directory with a .ss filename
extension.

A view is a subdirectory inside a subsystem directory. It provides a means of
grouping certain files, or objects, that constitute a project. There are two types of
- views in Apex. Working views have a .wrk filename extension while Release
views have a .rel filename extension. Working views contain objects being
currently developed and Release views store release versions of software
systems.

Apex uses the Rational Configuration Management and Version Control
(CMVC) system to help you manage development and simultaneous changes in
objects within a project. CMVC supports a check-in/check-out reservation system
for the source files in a project and maintains a change history for each object in
the project.

The Apex Ada editor helps you to generate code in Ada more efficiently. It
includes editing, pretty-printing, syntactic analysis, semantic analysis, and
traversal browsing. It forces your programming team to follow a consistent
programming style, increasing productivity, and reducing maintenance problems.

In managing compilation Apex uses switches to set view specific options for
the Apex compiler and other tools, automatically determines the dependencies
between Ada units so a makefile is not needed to control compilations, and uses
its awareness of dependencies between statements and declarations within Ada
units to perform optimal recompilatiom automatically when a change, deletion, or
addition is made. Syntactic and semantic analysis highlights errors and supplies
error messages that help you correct your program immediately.

The Ada debugger makes it easy for you to analyze the behavior of an Ada
program as it runs. It allows you to display the source code for any part of a
program, display the contents of the stack for any task in a program, display and
modify the values of variables in a program, place breakpoints in the program,
display tasks and their current execution state, execute one statement,call, or

- machine instruction at a time, and handle exceptions in various ways.

Chapter 1 Introduction

Getting Started

When Apex starts, the following windows will appear:

a. An Apex panel window

b. Directory-viewer window

c. Version.doc window

d. Debugger Log deow

The Apex panel window allows you to display the Project Setup window,
used to create projects, visit files using the directory-viewer window, display the

Windows window, or exit Apex terminating your Apex session.

The directory-viewer window displays the name of a directory and its
contents. It is the main window used to access Apex files and directories. -

The Version.doc window provides'copyright, trademark, and technical support

information and contains buttons to access that information. The Debugger Log
window is iconified when Apex starts. It will be discussed later.

Creating Objects

You can create, copy, open, save, and delete objects by selecting commands
from the File menu. To create an object click File:New from the directory viewer
File menu. Apex will open a cascading menu offering the following choices:

a. New Ada

b. New C++

¢. New Directory

d. New History

e. New Export Set

f. New View

g- New Subsystem

h. New Configuration

Chapter 1 Introduction

Clicking on either of these will cause Apex to open a dialog box designed for

your choice. Inserting the proper information and clicking OK or Apply will
create your object.

Chapter 1 Introduction

2 Text Editors

Any UNIX editor may be used to edit text in the Apex environment. However,
Apex provides two editors, the Apex text editor and the Apex Ada editor, which
support mouse-driven editing operations. Of course, the Apex Ada editor has
special features for editing Ada source files.

-The Apex Text Editor

The Apex text editor is used to create, view, and edit source code and other
types of text files. It is started by selecting the File:New:New File command
from the File menu. An existing file may be opened by choosing the Open
command from the File menu. Either action causes an Apex text editor window
to appear on your screen. The window will have a menu bar which contains File,
Edit, View, Navigate, Control, Compile, Debug, Tools, and Help buttons.
Clicking on Edit brings up a menu with commands to perform standard delete,
cut, copy, and paste operations; undo editing; reinstate editing commands that
have been undone (redo); search text for specified patterns; and other editing
operations. Selecting these with the mouse is much faster than using the
keyboard.

The Ada Editor

The Ada editor is used to create, view, and edit Ada source code. An Ada
editor window appears as result of each of the following:

a. Selecting the File:New:New Ada command from a file menu.
b. Selecting Open from a file menu (Open dialog box will appear).

c. Selecting the unit in an Apex directory-viewer window and choosing
Visit. -

The Ada editor window contains a menu bar with buttons that generate menus
for a variety of operations. The Edit menu allows you to perform all of those
operations available in the Apex text editor. The Compile and Navigate menus
offer you commands for many Ada-specific editing features.

Chapter 2 Text Editors

The Ada editor recognizes the structure of Ada elements and their
relationships with each other. So it offers special browsing, selecting, formatting,
and error-checking commands for Ada units. You can browse through
independent Ada units when you have need to:

a.

Inspect someone else's program and want to find the type definitions for
program variables.

Debug a problem and want to see where and how a particular subprogram
is implemented.

Consider a change to a subprogram and want to know exactly where the
subprogram is used.

To traverse Ada elements simply place the cursor on an element and select
Visit or Visit In Place from the Navigate menu. The results are as
follows:

Navigate:Visit or Navigate: Visit In Place - Traverses to the defining
occurrence of a program element.

Navigate:Visit Ada Name - Opens a dialog box you can use to traverse to
an Ada unit, given its name.

Navigate:Visit Body or Navigate:Visit Body In Place - Traverses to the
body of an Ada specification.

Navigate:Other Part or Navigate: Visit Other Part In Place - Traverses
to any selected part of an Ada specification.

The Ada editor lets you find all places where a particular Ada element is used
by selecting one of the commands

vCompile:Show Usage

Compile:Local Usage

It also lets you find all Ada elements that are not used by selecting

Compile:Show Unused

In each case the elements in question are highlighted. You can traverse from
one occurrence to another by clicking the Message -> button or the Message <-

button.

Several commands available from the Compile menu make formatting of Ada
units easier and more convenient.

Chapter 2 Text Editors

a. Compile:Build Body creates a skeletal Ada body for an existing Ada
specification.

b. Compile:Syntax does syntactic completion and pretty-printing. Syntax
completion includes insertion of prompts for missing units, insertion of
ending punctuations, insertion of reserved words, and matching identifiers
in the end statements of loops. Pretty-printing includes capitalization of
identifiers, adjusting line breaks, adjusting indentation, and spacing
around delimiters and operators.

c. Compile:Pretty-Print prints an Ada unit that was modified with some
other editor.

d. Compile:Complete does semantic completion such as supplying the with
clauses, use clauses, renames declarations, and parameters for procedure
calls.

e. Compile:Make Inline absorbs a subunit into the subunit's parent.

f. Compile:Make Separate converts a selected subprogram, task, or
package body into a separate unit.)

Error checking is made easy by the Ada editor. The Compile:Syntax menu
command performs syntactic checking. The Compile:Analyze command
performs semantic and syntactic checking. Apex highlights any errors found. You
can traverse from one error to another by clicking the Message -> button or
Message <- button. Upon clicking the Explain button Apex displays a window
with the error message.

Chapter 2 Text Editors

3 Writing Programs in Ada

An Ada application typically consists of many interdependent units such as
procedures, packages, and functions. Apex is designed to support the
development of large complex systems that are divided into subsystems to make
them more manageable. All compilations in Apex are done in the context of
subsystems regardless of size of the program.

When Apex starts it opens a directory-viewer window that displays a list of
files and directories. Directories appear before files. Names beginning with
numbers precede names beginning with letters of the alphabet. Names beginning
with uppercase letters precede names beginning with lowercase letters. To view
an object listed in the directory-viewer window you can select the object and click
View or you can double-click the object's name. You can also issue commands
from the directory-viewer window's menu to load, save, and print files and to
execute and debug programs.

Creating a Subsystem

A subsystem may be created for personal use or for a group project. If you
create a subsystem for your personal use, you can place it in your home directory
where it is convenient for you to use. If you create a subsystem for a group
project, you should place it in a common area accessible to each member of the
group. To create a subsystem:

a. From a directory-viewer window, select the File:New:New Subsystem
menu item.

b. Apex then opens the New Subsystems dialog box.

c¢. Enter the full pathname for the new subsystem in the text field labeled
Subsystem Full Name. (It is not necessary to enter the .ss extension.)

d. Click on OK or Apply.

Once your subsystem is created you must have views within the subsystem.
Views contain files with programs. There are two kinds of views: working views,

Chapter 3 Writing Programs in Ada

in which programs are developed, and release views which store release views of
the subsystem. To create a view:

a. From the File menu in a directory-viewer window select File:New:New
View.

b. Apex will then open the New View dialog box.

c. Make sure the name of the appropriate subsystem is in the Subsystem
field. Enter a name for your new view in the Name text field. (Apex will
automatically add a .wrk suffix for a working view or a .rel suffix for a
release view.)

d. Select working or release in the block opposite Create an Empty View.

e. Click the Visit It check box.

J Click on OK or Apply.

Ada source files are produced in a working view. The specification of a source
file is always the name of the unit with the suffix .1.ada added. The body of a
source file is always the name of the unit with the suffix .2.ada added. An Ada

source unit is created as follows:

a. From a directory-viewer window, select the File:New:New Ada menu
item.

b. Apex will open a New Ada dialog box.

c. Click the Package box and select from the pop-up choices of Package,
Procedure, Function, Task, or Protected.

d. Click the Spec box and select from the pop-up choices of Spec, Generic
Spec, Body, or Subunit.

e. Enter a name for your unit in the Name text field. (Apex will
automatically add the .ada suffix.)

f- Check the Visit It box.

g. If you want your procedure to be controlled under the Rational CMVC
system, check the Make It Controlled box.

h. Click on OK or Apply. Apex opens an Ada editor window for a new
source file. The principal delimiters for your Ada unit will appear in the
window.

Chapter 3 Writing Programs in Ada

Compiling a Program

A program is always compiled within the compilation context of its enclosing
views. The compilation context of a view includes the compiler, the values of the
compiler's switches, and any imported views that provide external visibility to the
units being compiled.

Apex provides commands for compiling and linking Ada programs from the
Compile menu in the Ada editor window. The compilation commands and their
effects are given below.

a.

Syntax checks the current unit for syntax errors and then pretty-prints the
image. It will atterpt to correct any errors found. Objects and delimiters
representing errors are displayed in red print. Error messages are
displayed in the Message window. You may traverse to these by selecting
Message -> or Message <-.

Pretty Print adjusts capitalization of identifiers, line breaks, indentation
levels, and spacing around Ada-specific delimiters and operators. It
reformats code prepared on other editors.

Semanticize performs a semantic analysis of the current unit. It updates
the unit's underlying structure with semantic information and verifies that
the underlying structure conforms to the semantics rules of the Ada
language.

Parse parses the contents of the current program unit.

Analyze performs semantic analysis on the contents of the current unit. It
checks whether the unit is a legal Ada compilation unit.

Code generates object code from the current unit and advances the unit to
the coded state.

Link generates an executable from the current unit. That includes all
specs and bodies that are accessible through with and subunit
relationships.

Import Text Files opens a dialog box that lets you import a text file and
convert it into an Ada source file.

Clean removes compilation artifacts to what is required for the specified »
state.

Show Errors displays a dialog box that lets you search for Ada units with
errors.

Chapter 3 Wiriting Programs in Ada

10

k. Local Usage displays the occurrences of a selected declaration within the
current library unit. '

I Show Usage displays a viewer window that lists the instances of a
selected object with a specified scope.

m. Show Unused opens a window that displays the name of units containing
declarations that are unused in the specified closure.

n. Show Demotion Impact opens a dialog box that displays what other units
will be affected if you change the compilation state of the current unit.

o. Build Body incrementally builds bodies needed by selected units.
p. Make Separate makes a selected entity within a unit a separate subunit.

g. Make Inline makes a subunit part of its parent unit.

Linking a Program

The Compile:Link command links the current selection, producing
executables based on main entry points in the designated program units. Any
parameterless procedure can serve as the root of an Ada program that can be
linked to produce an executable. If linking is successful, the units advance to the
linked compilation state.

When you choose Compile:Link from a viewer window Apex displays the
Link dialog box which lists the selected unit and allows you to list additional
units. If you choose Compile:Link from an editor window, Apex analyzes the
current unit using the Link dialog box defaults.

Executing a Program

When you choose the File:Run menu item, Apex will open the Run dialog
box. The Run dialog box contains three text ficlds where you may enter the name
of the program you want to execute, arguments that you want to pass to the
program, and the context in which the program will execute. The execute field
and context field are usually filled by Apex.

The Run dialog box also allows you to redirect input, output, and error output.
If you select the Debug option, Apex will antomatically select the Direct output
to an xterm option. Clicking OK in this box causes execution of the program.

Chapter 3 Writing Programs in Ada

4 Debugging

When you start Apex, a debugging window called the Ada Debugger Log
window automatically opens in the form of an icon on your screen. When you
conduct a debugging session, all interactions with the debugger are displayed in
a sequential log in the Debugger Log window. You may raise the window by
double-clicking on it or you may select the Debug: Window:Main Log menu
item in an Ada editor window.

Debugging is an extremely important step in software development.
Researchers have pointed out that a high percentage of computer programs have
errors when first run. However, a lower percentage have logical errors.
Debugging may be a part of the entire compile and test procedure.

Starting the Debugger

The easiest way to start a debugging session is by selecting the File:Run
menu item from either a directory-viewer window, the Debugger Log window,
or an Ada editor window. The Run dialog box opens. You can execute and
debug the program simultaneously by selecting the Debug button and clicking
OK or Apply.

When you start debugging a program, Apex creates a new job. You have two
jobs visible within Apex: the debugger server that monitors the debugger
functions and a job that executes the program. When you debug an Ada program,
source-level debugging is available for all readable code in the closure of the
program. If the debugger halts execution of the program, you can select the
Visit-Source option and Apex will display the current location in the source
code in an editor window.

Once the debugger is started. program execution is under your control. You
can let the program run normally or you may stop execution at predetermined
points or when predetermined conditions occur. Some of the things that you can
do are given below.

You can run the program one step at a time by choosing Step Statement from
the Step submenu. Execution will halt after each declaration is elaborated and

Chapter 4 Debugging

11

12

after each statement is executed. Stepping through a program lets you analyze its
behavior.

You can step through the program one statement at a time, stopping inside
procedure calls but not stopping in function calls. This can be done by choosing
the Step Into option from the Step submenu.

You can step through the program within the current subprogram one step at a
time without stopping inside any subprogram calls. To step through a program
this way choose the Step Over option from the Step submenu.

You may step through the program one instruction at a time by choosing the
Step Instruction option from the Step submenu.

You can run the program until the current stack frame is exhausted, and then
stop before executing the next Ada statement. This is done by choosing Run
Returned from the Step submenu.

Finally, you may choose to continue program execution after examining the

" reason for a pause by selecting Continue from the Debug menu. After stepping

operations are completed execution may be returned to normal by selecting
Debug:Clear Stepping.

To the debugger, every program consists of one or more tasks. The main
program is called the root task. Apex assigns to each task a number. Whenever
the debugger displays information about a task it displays that number. The task
number may be used to issue commands for debugging.

When a program consists of multiple tasks, each task maintains its own call
stack. If a function or procedure is called, local variable definitions and other
important information are placed in a construct called a stack frame. When the
Apex debugger stops a task, this information can be retrieved from the stack by
the debugger.

You can display the status of all tasks in a program by selecting
Debug:Window:Tasks from the debug menu. You can display the contents of
stacks by selecting Debug:Window:Stack. A task is always in one of two states:
running or stopped. When a task is in the stopped state it does not execute. All
other tasks are listed as Running, even though they are actually stopped. This is
done so you can tell which is the current task.

During a debugging session there are two jobs being executed: the debugger
job and the program job. When your program is loaded, Apex automatically
creates a program job and a debugger. The debugger controls execution of your
program. Hence, the debugger job controls the program job. The Jobs window
shows the status of the program job, while the Ada_Debugger_Server or
Servers window displays information about the debugger job.

Chapter 4 Debugging

Setting Debugger Options

When you select the View:Options command from any debugger window,
the Ada Debugger Options dialog box is displayed. You can customize the
debugger to fit your needs by selecting options. These options and their default
settings are listed here:

a.

Chapter 4 Debugging

Auto_Kill automatically kills the current job being debugged before
running a new job. Default is False.

Display_Addresses shows the program counter location at the stopping
point and in the Stack window. Default is True.

Visit_Source automatically displays the source when execution stops.
Default is True.

Save_Exceptions saves the current exception-handling requests in the
debugger state file when the program is terminated. Default is True.

Save_Breakpoints saves the current breakpoints in the debugger state
when the program terminates. Default is True. "

Save_Options saves your options in the debugger state file when the
program terminates. Default is False.

Read_User_State reads the debugger user-state file when a program is
loaded. Default is True.

Read_Program_State reads the debugger program-state file when the
program is loaded. Default is True.

Qualify_Names displays full debugger pathnames for all names except
those in the Stack window. Default is True.

Qualify_Stack_Names displays full debugger pathnames in the Stack
window. Otherwise, relative debugger pathnames are displayed. Default
is True.

Special_Type_Display specifies that you want to use the customized
display associated with this object, if one exists. Default is True.

Display_Levels sets the default number of levels to display in the Show
Data dialog box. Default value is 4.

Expand_Pointers sets the default to selected for the Expand Pointers
option in the Show Data dialog box so pointer objects are dereferenced.
Default is True.

13

14

n. Show_Location sets the default to selected for the Show Locations
option in the Show Data dialog box so that the memory location or
register number is also displayed, if applicable. Default is False.

o. Element_Count sets the number of elements to display for an array.
Default value is 10.

p. Stack_Count sets the number of call levels to display in the Stack
window. Default value is 10.

When the Ada Debugger Options dialog box is displayed, the default
settings will be present. You simply need to click on those that need changing.

Using Breakpoints

One way to monitor the behavior of a program is to set breakpoints in the
program. A breakpoint may be set at any declaration or statement in the program.

_ A breakpoint is in one of two states, active or inactive. If it is inactive, it has no

effect on the execution of the program. If it is active, it will halt execution of the
program when it reaches the point where the breakpoint is placed.)

There are two types of breakpoints. A permanent breakpoint remains active
for as long as a program is running under the debugger or until it is explicitly
removed. A temporary breakpoint is automatically removed after the first time it
is encountered.

There are three ways to create a breakpoint. The easiest way is to open an
editor window and select the desired breakpoint location. Then choose the
Debug:Break Here command. You may also open the Breakpoints window and
choose Breakpoints:New or open any debugger window and choose
Debug:Break. Either of these commands will cause the debugger to display the
Set Breakpoint dialog box. The breakpoint can be set by entering the statement
or declaration in the location field and selecting options as needed.

You can open the Breakpoints window by opening the Debugger Log
window and selecting Breakpoints in the windows menu or by clicking the
Breakpoints button in the Debugger Log window's button bar. All active
breakpoints are displayed in the upper half of the window and inactive
breakpoints are in the lower half.

To activate an inactive breakpoint:

a. Open the Breakpoints window.

b. Select the breakpoint you want to activate.

¢. Choose the Breakpoints:Activate command or click the Make Active
button in the Breakpoints window.

Chapter 4 Debugging

To deactivate an active breakpoint:

a.

b.

Open the Breakpoints window.
Select the breakpoint you want to deactivate.

Choose the Breakpoint:Deactivate command or click on the Make
Inactive button in the Breakpoints window.

To remove a breakpoint:
a. Open the Breakpoints window.
b. Choose the breakpoint you want to remove.

C.

Choose the Breakpoint:Remove command.

When the debugger has halted execution of a program, you can step through
the statements, instructions, expressions, functions, and procedures in various
- ways. Selecting the Debug: Visit_Seurce option opens an Ada editor window
that displays the current Ada unit. The current statement is selected. The stepping
commands are as follows:

a.

Chapter 4 Debugging

Debug:Step:Step Over from an Ada editor window or Execution:Step
Over from a debugger window - Step to the next statement in the same
context.

Debug:Step:Step Into from an Ada editor window or Execution:Step
Into from the debugger window - If the current statement is not a
procedure call, step to the next statement in the same context. If the
current statement is a procedure call, step to the first statement of the
procedure.

Debug:Step:Step Statement from the Ada editor or Execution:Step
Statement from a debugger window - Step to the next source statement
regardless of its containing unit. Each function call and each procedure
call is stepped through statement by statement.

Debug:Step:Step Instruction from the Ada editor or Execution:Step
Instruction from the debugger window - Step one machine instruction.

Debug:Step:Repeat Step from the Ada editor or Execution:Repeat Step
from a debugger window - Repeat previous step command.

Debug:Continue from the Ada editor or Execution:Continue from a

debugger window - Continue execution after the program has stopped for
any reason.

15

16

g. Debug:Step:Run Returned from an Ada editor or Execution:Run
Returned from a debugger window - Execute until the current stack
frame is completed and stop execution before the next Ada statement.

h. Debug:Stop from an Ada editor or Execution:Stop from a debugger
window - Halt the program being debugged.

i. Execution:Clear Stepping from a debugger window - Clear stepping
from all threads.

Displaying Values of Objects

Apex provides two Debug commands you can use to display the current
value of a selected object or expression. The Debug:Display command from an
Ada editor window displays a specified object in an elided form in an Object
Display window.

The Debug:Show command operates in different ways depending on whether
you issue the command from an Ada editor window or from a debugger window.
When issued from an Ada editor window, it displays the current value of any
object or expression that is selected.

When issued from a debugger window, Debug:Show opens the Show Data
dialog box. In the Expression text field you list an expression whose value you
want displayed. For an object you must enter the debugger pathname.

During a debugging session you may monitor objects by displaying their
values in the Monitors window. The Monitors window is displayed by selecting
Windows:Monitor from a debugger window or Debug:Window:Monitors from
an Ada editor window.

Machine Level Debugging

An essential aspect of debugging is having the ability to determine the
location when the program stops and the value of data being operated upon by
the current instruction. Also, it is important to know the contents of registers at
that moment. Apex lets you perform machine-level debugging by dlsplaymg and
modifying registers and memory locations.

There are two ways to obtain information. The Registers window displays the
current values of all registers in the current focus. When the Floating Point
Registers option is selected, the floating point registers are also shown. The
Registers window can be displayed by executing the Windows:Registers
command from a debugger window or Debug:Window:Registers from an Ada
editor window.

Chapter 4 Debugging

In the Debugger Log window you can display the memory location or
register name containing a specified object by the following:

a. Execute the Debug:Show command.
b. 'When the Show Data dialog box appears, set the Show Location option.
c¢. Click OK to close the Show Data dialog box.

d. Execute the Registers command. When Apex displays the Registers
window, the memory location or register name containing the selected
object is displayed in the Debugger Log window.

When you execute Debug:Medify Register from an Ada editor window,
Apex will open the Modify Register dialog box. Enter the register name in the
Register field. The Task field may be filled in. However, the default is the
present focus. The new value must be entered into the New Value field. This
may be a string or a based number. Hex is the default. After you click OK or
~ Apply, an appropriate message will appear in the Debugger Log window.

Contents of memory locations may be displayed in two ways. If you select the
Show Locations option in the Show Data dialog box and request information
about an object that is not stored in a register, the location and value of the object
will be displayed in the Debugger Log window.

You may also execute Windows:Memory from a debugger window or
Debug:Window:Memory from an Ada editor window to display the Memory
dialog box. Since the Memory dialog box is empty, Apex will also open the
Memory Bounds dialog box. You can enter the beginning location and range of
memory locations you wish to display. The range is entered in multiples of 16
bytes. The location and contents will be displayed in the Memory window.

To modify the data in a memory location, execute the Debug:Modify
Memory command. Apex will display the Modify Memory dialog box. The
address field must be filled in hexadecimal. In the Count field enter the number
of bytes to be changed. the New Value ficld must be filled with a string or a hex
number or a based number. Hex is the default. The new value will be displayed
in the Memory window.

Debugger Windows

When the debugger is created, it automatically creates a Debugger Log
window in which to record the status of the debugger and the program being
debugged. All interactions with the debugger are displayed in the Debugger Log
window as a sequential log. The debugger echoes all commands in this window
as they are executed and commands that generate output display it in this
window. At the beginning of execution several messages are displayed. The first

Chapter 4 Debugging

17

18

message identifies the program that you are running under the debugger. The
next set of messages show which breakpoints are installed. The final message
indicates that the debugger is stopped at the creation break. As you debug the
program, a message is added to the Debugger Log window to record each
debugger operation. Text in the Debugger Log window can be modified using
the File:Edit command and it can be selectively copied into other windows using
the Edit:Copy command. You can split the window into two display areas using
the View:Split command, or clear the Debugger Log window using the
File:Clear command.

The breakpoints window displays the list of currently defined breakpoints.
The window has an active area that displays the active breakpoints and an

inactive area that displays the inactive breakpoints. Each breakpoint has the
following format:

breakpoint number: location in task(s)

The Stack window displays the frames in the execution stack with the current

_focus being displayed at the top. Each frame row has the following format:

frame number PC = # PC address: statement location

The Exceptions window displays the current catch and propagate exception-
handling requests. Each exception-handling request has the following format:

Catch Exception name Location Task(s)
or or at or in or
Propagate All All All

The Registers window displays the registers and their current values. If the
Floating Point Registers button is checked, the floating point registers are also
displayed. Each row of the display gives the register name, the hex register
value, and the decimal register value.

The Memory window displays the contents of specific memory locations.
Each row contains a memory address of the first byte and the contents of four
consecutive 4-byte groups.

The Assembly window displays the assembly language instructions for the
program currently executing. The format of an assembly instruction calls for an
address, machine level instruction, assembly instruction, and source code.

The Task window displays the tasks which compose the currently executing
program. Each line contains a thread, a thread designator, and a state.

Chapter 4 Debugging

The Monitors window displays the names of all objects and expressions
being monitored. When execution stops, the debugger displays the current value
of all currently active monitored expressions in the Debugger Log window.

The Units window displays the library-level Ada units comprising the
currently running program in alphabetical order. A filename and a full view
name is given for each.

The Input/Output window accepts input and displays program output.
The Object Display window displays the value of a selected expression. It

allows the interactive expansion and elision of the subcomponents of a structured
object.

Chapter 4 Debugging 19

20

5 Managing Large Projects

Apex subsystems are modules. Subsystems support abstraction,
encapsulation, modularization, and the reuse of code. There are a number of well
understood principles for decomposing systems into subsystems. However, there
are many issues to consider, including the following:

a. The nature of the project being undertaken.
b. The organization that is producing it.

c. The size of the project.

d. The number ana kind of deliverables.

e. The technology being used in the project.

/. The geographical distribution of the organization producing the project.

Decomposition of the System

The main reason for decomposing a system into subsystems is to control and
manage complexity. Each of the smaller pieces of the system can be more easily
understood than the entire system because it is smaller. The system can be
understood in terms of its major pieces and their interfaces while ignoring the
internal details of each subsystem. The person or team who makes the
decomposition must understand the entire system, including the details of each
subsystem.

Another reason for decomposition is to make it possible for many developers
to work on a system in parallel. In order to do this, the work must be divided so
that developers can work without constantly having to edit the files of others.
There must be common agreement on interfaces. Once this is decided, each
developer can implement and test his part of the system independently of others.

Other reasons for decomposing a system are:

Chapter 5 Managing Large Projects

a. To facilitate reuse of code. A subsystem may be reused for, or obtained
from, another similar system.

b. To facilitate testing. Each subsystem can be tested independently of the
other parts.

c. To isolate dependencies on the execution platform, devices, or other
factors likely to change.

Subsystem decomposition also supports variants of a system. A variant is a
version of a system that has some different characteristics but is mostly the same.
Apex easily handles this under version control.

There are very general patterns that commonly occur in systems. More than
one organization might be applicable to a given system. A system can be
decomposed into subsystems using layering. Abstractions in the system are
placed into a hierarchy based on their use of other abstractions. In the bottom
layer are abstractions that are self-contained. In the next higher layer are
abstractions that make use of only the layer below them, and so on. Thus, there is

~ a hierarchy formed based on using relationships between subsystems. Apex can

represent and enforce a hierarchical layered architecture.

A complex system may perform several different functions for different
clients. There can be multiple applications in a system from a client's point of
view. A common architecture for building such systems is to have a layered
infrastructure that is common to several vertical applications. The vertical
applications themselves are layered internally. The vertical applications may
import one or more subsystems in the infrastructure layer, but do not import
subsystems in other vertical applications.

Subsystems and Views

A view contains the files that represent the elements in a subsystem. Each
view represents an alternate implementation or an alternate release of its
enclosing subsystem.

If files in different views have the same view-relative name they are
associated with the same logical element in the subsystem and they are said to be
corresponding files.

Each view provides both a version control context and a compilation context
to support the development and compilation activities involving the files in the
view. In its role as a version control context, a view provides:

a. A way to specify the desired version for each element in the subsystem.

b. A way to generate new versions and new objects.

Chapter 5 Managing Large Projects

21

22

¢. Methods to interchange versions with developers working in other views,
and ways to limit the interchange when the work of different developers
should not be mixed.

To provide a compilation context, a view manages:

a. The compiler that will be used to compile program units in the view.

b. Switches that are used by the compiler.

¢. The visibility to program units in other subsystems.

d. The visibility that the view itself will provide to clients in other
subsystems.

e. Manipulation of all compiler generated files.

Each view of a subsystem is populated with files that represent the contents of
the subsystem. Each file in a view represents a specific version of some element

" of the subsystem. More than one view can exist in a subsystem. Each view can

be used for a variety of purposes. The purpose is determined mostly by
convention, but Apex makes a distinction between a working view in which
development is done, and a release view that is used to represent a frozen release
of a subsystem. :

Often each developer will have his own view of each subsystem on which he
is working. Developers check out and check in files, edit, compile, and debug
using their own views.

"Views can be created that are used for integration or construction of releases
of a system. When releasing a system, a consistent set of views of all the
subsystems needs to be built.

Views can be created to serve as a repository for a specific version of a
system or of some subsystems. This might be for a stable version for some clients
to use or for testing purposes.

Views can also, be created to represent variants of a system The contents of
files in such a view may be different from the corresponding files in a view for a
different variant of the system. Variants might be created to support different
hardware platforms. Apex allows you to specify the history name for each file in
each view. Files are considered to correspond only if they have the same view-
relative name and the same history name.

Creating Subsystems, Views, and Towers

To begin a large project a directory must be established for the project with a
permanent name and accessible to all workstations to be used in the project.

Chapter 5 Managing Large Projects

Next, create all subsystems, within the directory, to be used in the project as
follows:

a. Select File:New:New Subsystem to bring up the New Subsystem dialog
box.

b. Fill in the full name of a subsystem to be created.

c¢. Since you will be creating a number of subsystems, click on Apply to
keep the dialog box open.

d. Enter the name of the next subsystem.
e. Click on Apply, and continue until all subsystems have been created.

A set of views will need to be created, at least one per subsystem. The
executables for the system will be built within these views. A naming convention
should be used for choosing consistent sets of views. You should use the same
view name for a view in each subsystem as an indication that these views are

~ intended to work together for a common purpose.

Such a consistent set of subsystems is called a tower. For instance, a set of
views in which the first version of the project is created, edited, compiled, and
debugged will be a tower. There will normally be a need for several towers for
different purposes. A tower will be needed for testing the system. Apex has the
capability to create and manage multiple towers. It is not necessary to keep each
tower you want. Towers can be created and populated from the CMVC database
on demand.

There may also be a need for personal towers for each developer or for each
development group. This gives them complete control over changes in that
tower.

To create a view, select File:New:New View. This brings up the New View
dialog box. The simple view name and subsystem name are to be entered. If the
default model is not to be used, then the model field must be filled. Since you
will be creating several views, turn off the Visit the new view toggle. Now, click
on Apply to create the view.

In order to reduce the labor of creating all views in several towers, a single

tower can be created with imports set up in the tower. Then the tower can be
copied to create all other towers.

Imports

Imports are the property of a view. Select Control:View Properties to bring
up the View Properties dialog box. To set the imports for each view:

a. Fill in the view name.

Chapter 5 Managing Large Projects

23

b. Press Return or click Reset to show the current view properties for that
view.

c. Type the full name of each view to be imported in the Add field of the
Imports area and press Return or click Add. Repeat until the imports list
field shows the complete list of imports desired for the view.

d. Click Apply to set the imports for the view.

If there are a number of subsystems that need to have the same views
imported, this can be done as follows:

a. Select Control:Change View Properties to display the Change
Properties Of View dialog box.

b. Add the views whose imports are to be changed to the Change
Properties of Views list field at the top of the dialog box.

c. Press Return or click Add.
d. Click the Change Imports button.
e. Click Add/Replace to specify the imports are to be added.

f Add the names of the views to be imported to the Change Properties list
field.

g Press Return or click Add.

h. Click OK or Apply to add the listed imports to each of the listed views.

There may be a need to have certain views within a system import each other.
This mutual import relationship may be established by starting with the Change
View Properties dialog box as follows:

a. Select Control:Change View Properties to display the Change View
Properties dialog box.

b. Add the names of the views to be imported into each other tb the Views
Iist field by entering their names in its Add text field and pressing Add.

c¢. Check the Change Imports box.
d. Click the Import Each Other button in the Change Imports area.
As we stated earlier, once a tower has been set up, you can create additional

towers by copying it. The File:Copy Object command brings up the Copy
Object dialog box. The process can be done as follows:

24 Chapter 5 Managing Large Projects

a. Click the Copy Views button.
b. Add the list of views to be copied to the Copy Views list.
¢. Click Add or press Return.

d. In the Destination area, click Destination name is subsystem-relative
view name.

e. In the Destination area, enter the new tower name in the Name field.

[Click OK or Apply to copy the tower.

Working in a Tower

The File:New menu provides a cascade which has operations for creating a
number of kinds of objects. It is used for creating program units and text files.
- Usually new objects will be placed under configuration management control.
This can be done automatically using Apex. '

Apex gives you the ability to control changes to individual objects in a
subsystem, and track what changes were made, when, why, and by whom. Each
object under CMVC control is associated with a history of changes. You can
construct, release, and maintain multiple consistent sets of versions in each
subsystem. Each alternative set constitutes a view of the subsystem. At a higher
level you specify a configuration of views from each subsystem to create a
complete system.

When a file is placed under version control, Apex starts tracking the file's
development in a special CMVC database. In this database, Apex saves each
version of the file as it is developed. In this way, the CMVC database provides
each developer with access to the same set of files, even though each file may be
under a different stage of development.

When an object is controlled, you must check it out before you can modify it.
When you have checked it out, you can edit it in any way you like, but all other
users are locked out. They cannot modify the object until you have checked it in
again.

Every time a file is checked out, modified, and checked in, a new version is
created in the CMVC database. Each version represents a snapshot of the file at
some moment in time. When files are checked out, modified, and checked in
repeatedly, the result is a time-ordered, numbered sequence of versions, called a
version history. The CMVC database maintains version histories by recording all
changes made to every controlled object. You can use the CMVC database to see
any version in a file's version history.

To create a new Ada unit:

Chapter 5 Managing Large Projects

25

~a. Click on File:New:New Ada to display the New Ada dialog box.
b. Set the option menus.
c¢. Enter the name for the new unit.
d. Check the Place Under CMVC Control checkbox.
e. Click on Visit It.
f Click on OK to display the Ada editor window.

Apex will append the proper suffix, .1.ada for an Ada spec or .2.ada for an
Ada body.

Again, an object in Apex under CMVC control must be checked out in order
to edit it. An object may be checked out in several ways:

a. Select File:Edit in an Apex editor window (or click on the Check Out
toggle button in the button bar). The Check Out dialog box for the unit is
displayed. Click OK.

b. Select the object in a directory viewer window and click on
Control:Check Out. This brings up the Check Out dialog box. Click
OK.

c. Select the object in a directory viewer window and click on
Control:Object Properties. This will display an Object Properties
dialog box for the object. Click on Check Out , then click OK.

d. Select the object in a directory viewer window and choose
Control:Change Object Properties. The Change Object Properties
dialog box is displayed. Click on the Check Out radio button. Click OK.

Only the highest numbered version of an object can be checked out. Checking
the object out creates a new version with the next h1gher number and this is the

version that can be changed.
To check in an object:

a. From a directory viewer window with the object selected, or from an
editor window on the object itself, choose Control:Check In. This
displays the Check In dialog box. Click OK.

b. From a directory viewer window with the object selected, or from an
editor window on the object itself, choose Control:Object Properties.
This displays an Object Properties dialog box. Click on Check In, then
click OK.

Chapter 5 Managing Large Projects

c. From a directory viewer window with the object selected, or from an
editor window on the object itself, choose Control:Change Object
Properties. Click on Check In, then click OK.

Chapter 5 Managing Large Projects

27

28

6 Conclusions

The Ada programming language supports structured programming, top-down
program development, re-use of general purpose components, and separate
compilation of program components. Hence, it is the language that is the perfect
choice for large software projects, while it is still efficient for average, or even,
small projects. I am sure that it will be the only language used at establishments
such as WES in the very near future.

Apex is designed to make software development in Ada an easy task. It has
the facility to separate a large system into subsystems for team assignments in the
development stage. The Ada language by nature allows these subsystems to be
developed, compiled, debugged, and tested as separate units, then combined to
perform the system task. Using Apex, the manager of a large project will have
access to, and control over, each subsystem during development. Each developer
will have access to his subsystem and any subsystem that is dependent upon his
unit. Apex requires that a program unit be checked out by a developer and then
checked in after editing it. Only one developer can edit a program unit at any
given time. This way, the manager can monitor the progress of the project at any
time during the development stage.

Apex has the ability to generate object code that will execute on a variety of
hardware platforms.

Chapter 6 Conclusions

References

References

Booch, Grady, Software Engineering With Ada. Menlo Park, CA: The
Benjamin/Cummings Publishing Company, 1983.

Caverly, Phillip and Goldstein, Phillip, Introduction to Ada: A Top-Down
Approach for Programmers. Monterey, CA: Brooks/Cole Publishing
Company, 1986.

Cohen, Norman H., Ada As A Second Language. New York: McGraw-Hill Book

Company, 1986.

Dale, Nell, Weems, Chip and McCormick, John, Programming and Problem
Solving With Ada. Lexington, MA: D. C. Heath and Company, 1994.

DeLillo, Nicholas J., A First Course in Computer Science With Ada. Homewood,
IL: Richard D. Irwin, Inc., 1993.

Feldman, Michael B., Data Structures With Ada. Reading, MA: Addison-Wesley
Publishing Company, 1993.

Gehani, Narain, UNIX Ada Programming. Englewood Cliffs: Prentice-Hall, Inc.,
1987.

Rational Apex Compiler Reference Manual. Rational Software Corporation,
Product Number 4000-00776, 1995.

Rudd, David, Introduction to Software Design and Development With Ada. St.
Paul, MN: West publishing Company, 1995.

Texel, Putnam P., Introductory Ada: Packages for Programming. Belmont, CA:
Wadsworth Publishing Company, 1986.

Tremblay, Jean-Paul, DeDourek, John M. and Friesen, Verna J., Programming in
Ada. New York: McGraw-Hill Publishing Company, 1990.

Using Rational Apex. Rational Software Corporation, Product Number 4100-
00285, 1995.

29

REPORT DOCUMENTATION PAGE Fom Approved

OMB No. 0704-0188

Pubic reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this coliection of information, including suggestions
for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arington, VA 22202-4302, and to the
Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
February 1997 Final report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A Brief Study of Rational Apex
6. AUTHOR(S)
Clyde Christopher
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
U.S. Army Engineer Waterways Experiment Station REPOBT NUMBER
3909 Halls Ferry Road, Vicksburg, MS 39180-6199 Technical Report ITL-97-2
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
U.S. Army Corps of En gineers AGENCY REPORT NUMBER
Washington, DC 20314-1000
11. SUPPLEMENTARY NOTES :
Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.
This report supersedes Technical Report ITL-96-4.
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

The programming language Ada was developed by the U.S. Department of Defense to help control the increasing cost of
its software. It is fast becoming the major general-purpose computer language. The language features type declarations,
constrained and unconstrained array processing, and packages. It supports modern software engineering methods such as
structured programming, data abstraction, top-down program development, re-use of general-purpose components, and
separate compilation of program components.)
Apex is an easy-to-use Ada software-engineering environment, developed by Rational Software Corporation, that helps to
develop large, complex projects in a minimum time frame. Some features of Apex are as follows: (a) rational subsystems
for architectural control; (b) rational CMVC, a sophisticated system for configuration and version control; (c) an intelligent
Ada editor; (d) tools for Ada compilation management; (e) an Ada debugger; (f) a modern graphical user interface; (g) tools
for customizing the Apex user interface; and (h) features for integrating Apex with other tools.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Ada Configuration management version control 36
Apex Waterways Experiment Station 16. PRICE CODE
17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION |19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102

.

